Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide
نویسندگان
چکیده
Rationale: Cardiac stem cell-derived exosomes have been demonstrated to promote cardiac regeneration following myocardial infarction in preclinical studies. Recent studies have used intramyocardial injection in order to concentrate exosomes in the infarct. Though effective in a research setting, this method is not clinically appealing due to its invasive nature. We propose the use of a targeting peptide, cardiac homing peptide (CHP), to target intravenously-infused exosomes to the infarcted heart. Methods: Exosomes were conjugated with CHP through a DOPE-NHS linker. Ex vivo targeting was analyzed by incubating organ sections with the CHP exosomes and analyzing with fluorescence microscopy. In vitro assays were performed on neonatal rat cardiomyocytes and H9C2 cells. For the animal study, we utilized an ischemia/reperfusion rat model. Animals were treated with either saline, scramble peptide exosomes, or CHP exosomes 24 h after surgery. Echocardiography was performed 4 h after surgery and 21 d after surgery. At 21 d, animals were sacrificed, and organs were collected for analysis. Results: By conjugating the exosomes with CHP, we demonstrate increased retention of the exosomes within heart sections ex vivo and in vitro with neonatal rat cardiomyocytes. In vitro studies showed improved viability, reduced apoptosis and increased exosome uptake when using CHP-XOs. Using an animal model of ischemia/reperfusion injury, we measured the heart function, infarct size, cellular proliferation, and angiogenesis, with improved outcomes with the CHP exosomes. Conclusions: Our results demonstrate a novel method for increasing delivery of for treatment of myocardial infarction. By targeting exosomes to the infarcted heart, there was a significant improvement in outcomes with reduced fibrosis and scar size, and increased cellular proliferation and angiogenesis.
منابع مشابه
Fibrin‐targeting delivery: a novel platform for cardiac regenerative medicine
Myocardial infarction (MI) and subsequent heart failure secondary to the massive lost of cardiomyocyte is a major cause of morbidity and mortality world-wide. Given the limited endogenous potential for renewal of cardiomyocytes in adults, cardiac cell-based therapies generating new cardiomyocytes and vessels have emerged as a promising treatment to reverse functional deterioration and prevent t...
متن کاملAn Aptamer-based Biosensor for Troponin I Detection in Diagnosis of Myocardial Infarction
Background: Acute myocardial infarction (MI) accounts for one third of deaths. Cardiac troponin I (TnI) is a reliable biomarker of cardiac muscle tissue injury and is employed in the early diagnosis of MI.Objectives: In this study, a molecular method is introduced to early diagnosis of MI by rapid detection of TnI.Materials and Methods: The detection method was based on electrochemical aptasens...
متن کاملExosomes Secreted by Normoxic and Hypoxic Cardiosphere-derived Cells Have Anti-apoptotic Effect
Cardiosphere-derived cells (CDCs) have emerged as one of the most promising stem cell types for cardiac protection and repair. Exosomes are required for the regenerative effects of human CDCs and mimic the cardioprotective benefits of CDCs such as anti-apoptotic effect in animal myocardial infarction (MI) models. Here we aimed to investigate the anti-apoptotic effect of the hypoxic and normoxic...
متن کاملExosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury
This study is aimed at investigating whether human umbilical cord mesenchymal stem cell- (hucMSC-) derived exosomes (hucMSC-exosomes) have a protective effect on acute myocardial infarction (AMI). Exosomes were characterized under transmission electron microscopy and the particles of exosomes were further examined through nanoparticle tracking analysis. Exosomes (400 μg protein) were intravenou...
متن کاملCharacterization of myocardial fiber orientation to assess therapeutic exosomes from cardiosphere-derived cells (CDCs) in myocardial infarcted porcine with in vivo diffusion-tensor CMR on a clinical scanner
Background Diffusion-Tensor cardiovascular magnetic resonance (DT-CMR) is capable of mapping myocardial fiber orientation [1,2]. It has been demonstrated in myocardial infarction (MI) murine models that DT-CMR can identify the effects of stem cell therapy on myocardial fiber orientation [3]. However, it remains to be seen if this recent work is translatable to large animal and clinical studies....
متن کامل